

Tetrahedron Letters 41 (2000) 7813-7816

Synthesis of novel 3'-methylene H-phosphonate thymidines

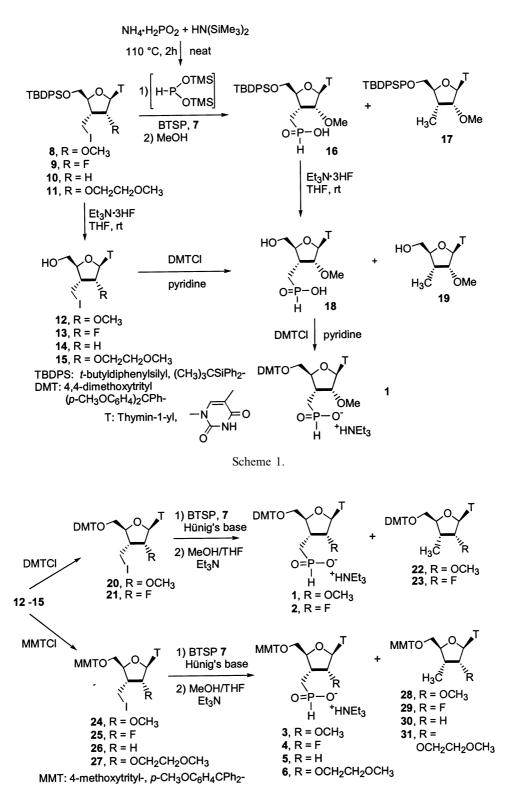
Haoyun An,* Tingmin Wang and P. Dan Cook

Isis Pharmaceuticals, Inc., 2292 Faraday Avenue, Carlsbad, CA 92008, USA

Received 13 July 2000; accepted 1 August 2000

Abstract

The synthesis of novel 5'-DMT- and 5'-MMT-protected 3'-methylene H-phosphonate thymidines 1-6, having methoxy, fluoro, hydrogen, and methoxyethoxy substituents at the 2'-position is reported. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.


Keywords: 3'-methylene; H-phosphonate; H-phosphonic acid; nucleotide; thymidine; Arbuzov reaction.

Utilization of antisense oligonucleotides as therapeutics in humans is undergoing evaluation in a number of clinical trials, and the first antisense drug has been approved.¹ These oligonucleotides are mainly phosphorothioates, simple backbone-modified DNA analogues with improved nuclease resistance but limited target-binding affinity and oral bioavailability. Recently, methylphosphonate, $^{2}3'$, 5'-methylene phosphine oxide, 3 phosphoramidate, 4 amide, 5 and other 6 backbone-modified oligonucleotides have received attention for their potential usefulness as antisense drugs. 3'-Methylene modified oligonucleotides are expected to increase stability against nucleases and target-binding affinity (Tm) to complimentary RNA based on the initial X-ray analysis of an octamer having a single 3'-methylene phosphonate (MP) linkage.⁷ In addition, 3'-methylene modified oligonucleotides may improve the bioavailability and cellular uptake, as well as alter the distribution because of their higher lipophilicity and isoelectronic/isosteric structures to natural DNA. However, 3'-methylene oligonucleotide has received little attention because of the synthetic difficulty encountered in the preparation of appropriate monomers and oligonucleotides. Synthesis of 3'-methylene phosphates (P^V) has been explored.⁸ The 3'-methylene phosphonate dimer⁹ and trimer¹⁰ have been prepared, and the dimer has been incorporated into an octamer by a solution-phase approach.⁷ However, the 3'-methylene phosphate or phosphonate monomer has not been utilized in oligonucleotide synthesis by a solid-phase approach.

In this communication, we describe a new effective strategy for the synthesis of novel 5'-DMTand MMT-protected 3'-methylene H-phosphonate thymidines 1-6 with 2'-O-methyl, fluoro, hydrogen, and O-(2-methoxy)ethyl substituents (Schemes 1 and 2). 3'-Methylene H-phosphonates 1-6 thus obtained serve as effective monomers for the synthesis of 3'-methylene modified oligonucleotides by a solid-phase approach.¹¹

0040-4039/00/\$ - see front matter @ 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01358-7

^{*} Corresponding author. Tel: 760-603-3834; fax: 760-929-0036; e-mail: han@isisph.com

Scheme 2.

The synthesis of 3'-methylene H-phosphonate monomers 1–6 having $-OCH_3$, -F, -H, and $-OCH_2CH_2OCH_3$ substituents at the 2'-position starting from the corresponding 3'-iodomethyl nucleosides 8–11¹² is depicted in Schemes 1 and 2. 2'-O-Methylthymidine 8 was utilized to develop the synthetic strategy. Ammonium phosphinate and 1,1,1,3,3,3-hexamethyldisilazane were heated at 110°C for 2 h to generate the intermediate bis(trimethylsilyloxy)phosphine (BTSP) (7).¹³ BTSP has been utilized for the synthesis of other small molecule H-phosphonates,¹⁴ but it has not been used in nucleotide chemistry. We have utilized BTSP as the phosphorus source to form a P–C bond of 3'-methylene H-phosphonates in one step from the corresponding iodomethyl nucleosides. The resulting novel H-phosphonate strategy instead of historical solution-phase phosphodiester or phosphotriester approaches.

3'-Iodomethylthymidine **8** was reacted in CH_2Cl_2 with BTSP **7**, prepared in situ, by an Arbuzov-type reaction. Hydrolysis of the resulting silyl intermediate with methanol provided the desired product **16** in 31% yield as the H-phosphinic acid after chromatographic purification. A reduced product, 3'-methyl compound **17**, was obtained in 59% yield as a by-product. The 5'-TBDPS protecting group of **16** was removed by treating it with triethylamine trifluoride (Et₃N·3HF) providing H-phosphinic acid **18** in 97% yield. Compound **18** was then reacted with DMT-Cl to generate the desired final H-phosphonate monomer **1** in 65% yield as its Et₃N salt. Treatment of **8**–**11** with Et₃N·3HF provided the corresponding unprotected nucleosides **12–15** in greater than 90% yields (Scheme 1). 2'-O-Methyl-3'-iodomethyl compound **12** was reacted with BTSP under the same conditions as described above to give H-phosphinic acid **18** in 24% yield and the corresponding reduced product **19** in 53% yield.

Compound 12 was reacted with DMT-Cl to provide 5'-DMT-protected compound 20 in 99% yield (Scheme 2). Arbuzov reaction between 20 and BTSP did not provide the desired compound 1; instead, deprotected products 18 and 19 were obtained because the DMT-protecting group was removed by H-phosphinic acid formed in the reaction. However, by adding diisopropylethyl-amine (Hünig's base), the Arbuzov reaction between 20 and BTSP generated the desired product 1 in 37% yield and the corresponding reduced product 22 in 54% yield after chromatographic purification. By the same manner as 2'-O-methyl derivatives, compound 13 was protected with DMT to provide 2'-fluoro-3'-iodomethyl nucleoside 21 in an excellent yield. Arbuzov reaction between 21 and BTSP under the same conditions in the presence of Hünig's base finally gave 2'-fluoro-3'-methylene H-phosphonate thymidine 2 and the reduced product 23.

5'-DMT-3'-methylene H-phosphonate thymidines 1 and 2 have been successfully used for the synthesis of oligonucleotides by solid-phase H-phosphonate chemistry.¹¹ However, the DMT-protecting group in the H-phosphonate nucleotide system is not an ideal protecting group. In order to utilize 3'-methylene H-phosphonate monomers for oligonucleotide synthesis more fully, we have considered the less acid labile MMT-protecting group. The reaction of deprotected compounds 12–15 with 3 equivalents of MMT-Cl provided the corresponding MMT-protected compounds 24–27 in 84–99% yields. Arbuzov reaction between 24–27 and BTSP under the same conditions as described above finally gave 5'-MMT-protected 3'-methylene H-phosphonate thymidines 3–6 and the corresponding reduced products 28–31. MMT-protected products 3–6 are more stable than 1 and 2, and subsequently more easily handled. Monomers 3–5 have been effectively utilized in solid-phase oligonucleotide synthesis.¹¹ New compounds 12–31 and novel 3'-methylene H-phosphonate thymidines 1–6 were characterized by NMR and high-resolution mass spectroscopic analyses. The synthesis of 3'-methylene H-phosphonate thymidines 1–6 from the corresponding 3'-iodomethyl nucleosides 8–11 was straightforward and efficient. This

strategy can potentially be used for the synthesis of other nucleobases with various 2'sustituents.

In conclusion, we have developed a useful strategy for the synthesis of various 2-substituted 3'-methylene H-phosphonate nucleotides. New 5'-DMT- and 5'-MMT-3'-methylene H-phosphonate thymidines 1–6 with four different substituents at the 2'-position were synthesized successfully by this strategy. Two types of protecting groups at the 5'-position provided more flexibility and the corresponding monomers have been utilized successfully in solid-phase oligonucleotide synthesis. Syntheses of 3'-methylene H-phosphonates using other nucleobases and 3'-methylene modified oligonucleotides, as well as their antisense property studies, are in progress and will be reported in due course.

Acknowledgements

The authors thank Drs. Mano Manoharan, Martin Maier, Bruce Ross, Ramesh Bharadwaj, Bal Bhat, and Andrei Guzaev for their helpful discussions.

References

- (a) Cook, P. D. Ann. Rep. Med. Chem. 1998, 33, 313. (b) Cook, P. D. Antisense Research and Applications; Crooke, S. T.; Lebleu, B., Eds.; CRC: London, 1993; pp. 149–187.
- (a) Kulka, M.; Smith, C. C.; Aurelian, L.; Fishelevich, R.; Meade, K.; Miller, P.; Ts'O, P. O. P. Proc. Natl. Acad. Sci. USA 1989, 86, 6868. (b) Agrawal, S.; Goodchild, J. Tetrahedron Lett. 1987, 28, 3539.
- 3. Collingwood, S. P.; Taylor, R. J. Synlett 1998, 283.
- 4. Gryaznov, S. M. Nucleosides Nucleotides 1997, 16, 899.
- 5. (a) Waldner, A.; Mesmaeker, A.; Wendeborn, S. Bioorg. Med. Chem. Lett. 1996, 6, 2363. (b) Mesaeker, A.; Wnedeborn, S.; Jouanno, C.; Fritsch, V.; Wolf, R. M. Bioorg. Med. Chem. Lett. 1997, 7, 1869.
- (a) Matt, P.; Altmann, K. H. *Bioorg. Med. Chem. Lett.* 1997, 7, 1553. (b) Baeschlin, D. K.; Hyrup, B.; Benner, S. A.; Richert, C. J. Org. Chem. 1996, 61, 7620. (c) Vasseur, J.-J.; Debart, F.; Sanghvi, Y. S.; Cook, P. D. J. Am. Chem. Soc. 1992, 114, 4006. (d) Böhringer, M. P.; Graff, D.; Caruthers, M. H. Tetrahedron Lett. 1993, 34, 2723. (e) Kofoed, T.; Rasmussen, P. B.; Valentin-Hansen, P.; Pedersen, E. B. Acta Chem. Scand. 1997, 51, 318. (f) Kofoed, T.; Caruthers, M. H. Tetrahedron Lett. 1996, 37, 6457.
- 7. Heinemann, U.; Rudolph, L. N.; Alings, C.; Morr, M.; Heikens, W.; Frank, R.; Blöcker, H. Nucleic Acids Res. 1991, 19, 427.
- (a) Morr, M.; Ernst, L.; Grotjahn, L. Z. Naturforsch. 1983, 38b, 1665. (b) Albrecht, H. P.; Jones, G. H.; Moffatt, J. G. Tetrahedron 1984, 40, 79. (c) Morr, M.; Ernst, L.; Schomburg, D. Liebigs Ann. Chem. 1991, 615. (d) Serra, C.; Dewynter, G.; Montero, J. L.; Imbach, J. L. Tetrahedron 1994, 50, 8427. (e) Yokomatsu, T.; Sada, T.; Shimizu, T.; Shibuya, S. Tetrahedron Lett. 1998, 39, 6299.
- 9. Morr, M.; Ernst, L.; Kakoschke, C. *Chemical Synthesis of Molecular Biology*; Blocker, H.; Frank, R.; Fritz, H., Eds.; GBF Monographs; VCH: Weinheim, 1987; Vol. 8, pp. 107–113.
- 10. Mazur, A.; Tropp, B. E.; Engel, R. Tetrahedron 1984, 40, 3949.
- Maier, M. A.; Guzaev, A. P.; Wheeler, P.; An, H.; Wang, T.; Cook, P. D.; Manoharan, M. Abstract of Papers, 218th National Meeting of the American Chemical Society, New Orleans, LA; American Chemical Society: Washington, DC, 1999; CARB91.
- An, H.; Wang, T.; Maier, M. A.; Haly, B. H.; Cummins, L. L.; Owens, S.; Lesnik, E.; Wheeler, P.; Manoharan, M.; Ross, B.; Freier, S.; Cook, P. D. *Abstract of papers*, 218th National Meeting of the American Chemical Society, New Orleans, LA; American Chemical Society: Washington, DC, 1999; CARB92.
- (a) Boyd, E. A.; Regan, A. C. *Tetrahedron Lett.* **1992**, *33*, 813. (b) Kurdyumova, N. P.; Ragulin, V. V.; Tsvetkov, E. N. *Zh. Obshch. Khim.* **1996**, *66*, 1402. *Russ. J. Gen. Chem.* **1996**, *66*, 1365.
- (a) Boyd, E. A.; Regan, A. C. Tetrahedron Lett. 1994, 35, 4223. (b) Chen, S.; Lin, C.; Walsh, C. T.; Coward, J. K. Bioorg. Med. Chem. Lett. 1997, 7, 505. (c) Chen. S.; Coward, J. K. J. Org. Chem. 1998, 63, 502.